Fuego Go: The Missing Manual
Grace I. Lin

Independent Study Quarterly Report for Dr. David Helmbold
Fall Quarter, 2009

Purpose

The purpose of this report is to provide some information on how Fuego uses UCT search
to generate a move given current board position. While Fuego provides developer
documentation on their website, it is not intuitive on where modifications can be made. So
it is my hope that the report may also be helpful in make modifications in the future.

Fuego Documentation

Fuego functions and classes are documented using Javadoc-style Doxygen syntax. This
makes it easier to navigate through the code by clicking through links. The online Fuego
documentation (http://www.cs.ualberta.ca/~games/go/fuego/fuego-doc/) reflects the
current implementation. Users can also generate a local version of the Doxygen-style
documentation reflecting the downloaded version.

Portability
e Standard C++
* External library: Boost
e (CPOSIXlibrary - using C calling conventions

Code Naming Conventions
* Member variables use prefix m_
e Static variables use s_
* Global variables use g_

Fuego Libraries and Applications

Fuego is composed of five libraries and two applications. Figure 1 shows the module
dependencies between them. For example, the library GtpEngine does not depend on any
other module, while the library GoUct depends on three libraries: Go, SmartGame, and
GtpEngine.

GtpEngine

Five libraries:

1. GtpEngine - implementation of Go
Text Protocol (GTP); game-

i independent

Go 2. SmartGame - utility classes/code can

be shared between different 2-player

board games
3. Go - Go specific classes

4. SimplePlayers - players with simple
algorithms
5. GoUct - Go UCT player

\4

SmartGame

SimplePlayers GoUct

A 4

X Two applications:

FuegoTest FuegoMain 1. FuegoTest- GTP interface with
commands for testing purposes

2. FuegoMain- GTP interface to
GoUctPlayer

Figure 1: Fuego Libraries and
Applications

Running Fuego in Command Line

Once Fuego is downloaded and compiled, we can play the game in the command line using
provided GTP commands. The list of GTP commands can be found in each of the five
classes:

* GtpEngine

* SgGtpCommands

* GoGtpEngine

* GoBook

* GoUctCommands
Reference: http://www.cs.ualberta.ca/~games/go/fuego/fuego-doc/fuegomain-
doc/index.html

Here are some useful commands to get started: (% indicates the UNIX prompt; // indicates
my comment)

% fuego // starts Fuego

% go_board // print info about current game board

% komi <n> // set komi

% genmove <b/w> [/ generate and play a move for black or white (see below)
% gg-undo <n> // undo past n moves

% play <c> <m> // player c makes move at a point (e.g. Q4)

% showboard // show board with player stones

%]list_stones <b/w> // list stones for player

The command “genmove” is of particular interest to us since it is where all the magic
happens. A top-level trace of function calls of this command is provided in the following
section.

Generate Move with UCT Search

One of the challenges was going through the massive C++ code written in Fuego and trying
to make sense out of it. This section presents a trace of top-level function calls to show how
UCT search works through the command “genmove”. Hopefully this will help in making
modifications to the code in the future.

Each box represents a function call, along with the corresponding class name and brief
description. It focuses on generating a move using the UCT search given the current board
position. Itis basically a top-level trace of the command “genmove” mentioned above.

Note that this is NOT a complete sequence of function calls. Many details were left out of
the diagrams.

The actual diagram is divided into the following order: 1) GTP command, 2) top-level
search, 3) play game, 4) in-tree phase, and 5) play-out phase.

1. GTP command

In Figure 2, the “genmove” command enters the code at CmdGenMove() then onto
GenMove() in the Go GTP Engine class. Fuego will try to lookup a move in the Go book first.
If that did not generate a move, then the engine will try to generate a move based on the
selected search mode:

* No search, use policy to select a move

* UCT search (our focus)

* One-ply Monte-Carlo search

As an example, the diagram is read as follow:
* CmdGenMove() calls GoGtpEngine::GenMove()
* GoGtpEngine::GenMove() first calls LookupMove(). If it did not generate a move,
then it calls GoUctPlayer::GenMove().
* GoUctPlayer::GenMove() calls DoSearch()
* DoSearch() calls Search(), which is described in the following sections

CmdGenMove()
GoGTPENgine

\ 4

GenMove()
GoGTPEngine

1. LookupMove() If no lookup move

GoBook
Randomly select a move for

current position 2. GenMove()

GoUctPlayer
\ y

LookupAliMove() DoSearch() .. Search Mode
GoBook GoUctPlayer No search, use policy
Run search for given color/player * UCT search
See Search Mode * One-ply Monte-Carlo search
\
Search()
SgUctSearch

Figure 2: Generate Move (GTP Command) Diagram

2. Top-level search

Following up from the previous section, the UCT search (Figure 3) starts with game
initialization and thread creation. Once the thread is started, Fuego enters a search loop to
iteratively build a tree by playing games (see next section) . The loop is terminated when
the tree cannot be expanded anymore. Once the search is done (play finished), prune
nodes with low count, then proceed to find the best sequence of the tree.

The sequence is found by finding a best child node (representing the next move) of the
current node in tree. The move selection strategy currently has four choices:

1. Select move with highest mean value (highest win-loss ratio)

2. Select move with highest count

3. Use UCT bound (combined with RAVE) : GetBound(), which is GetValueEstimate()

plus UCT bias

4. Use weighted sum of UCT and RAVE value (no bias term) : GetValueEstimate()

Reference: Inside SgUctSearch class, find enumerated list SgUctMoveSelect

Search()
SgUctSearch

1. StartSearch() 2. Thread::StartPlay() 3T y 0 4. Copy owCount() 5. F'“"BS“‘SSN":"*U
SgUctSearch SgUctSearch f----- > SgUctSearch SgUctSearch . Sguet sarfc
Initialize search Set Mutex Wait Mutex Get a copy of tree with low count MBI ERE i)
nodes pruned
/ loop for all threads
1. CreateThreads() 2. StartSearch() =
SgUctSearch GoUctGlobalSearchState Move Selection Strategy: FindBestChild() JPtae \
Get current board information * Select move with highest mean SgUctSearch le-” iterate through

* Select move with highest count [Find child node With bestmove. ~~ | all tree nodes
* Use UCT bound (GetBound()) See Move Selection Strategy. ~_

* Use weighted sum of UCT and RAVE
(GetValueEstimate())

SearchLoop()
SgUctSearch

————— N IF using UCT bound value IF using estimated move value

Loop until tree cannot be

-7 expanded anymore
L - panded g GetBound() GetValueEstimate()
. SqUctSearch SqUctSearch
Weighted Move+RAVE value + Weighted Move+RAVE
PlayGame() ;
SqUctSearch

Figure 3: Generate Move (Top-Level Search) Diagram

3. Play a Game
The PlayGame() function is called repeatedly until the tree is fully expanded, as shown in

Figure 4. In includes a in-tree phase (PlaylnTree()) and a play-out phase (PlayoutGame()).
These simulated moves will be “undone” since they are not real moves. All the information
generated remains. The game is terminated after two passes. It is scored with the Tromp-
Taylor rule (a Chinese scoring method that assumes alls tones on the board are alive).
Once the current game is finished, update the tree, RAVE values, and statistics.

- - Loop until free cannot be
- expanded ;;\nymore
.
-
PlayGame() |-~ -
SgUctSearch

8. UpdateTree()
9. UpdateRaveValues()
10. UpdateStatistics()
SgUctSearch

1. PlayInTree() 3. PlayoutGame()
SgUctSearch e SgUctSearch -
Play in-tree phase (start with root) 9
\ -7 .

Figure 4: Generate Move (Play a Game) Diagram

4. In-Tree Phase

The in-tree phase (Figure 5) expands nodes until there is a proven win/loss. It generates
legal moves, create children nodes, select the best child base on UCT bound (calls
GetBound()), and finally executes the move. The loop continues until the last move
produces and win or loss of the game.

1. PlayinTree()
SgUctSearch
Play in-tree phase (start with root)

3. SelectChild()
2. ExpandNode() | _ _ > SgUctSearch | 4. Execute()

SgUctSearch Select base on UCT bound GoUctState
(call GetBound())

[=~ Loop until proven win/loss

\ 4

CreateChildren()
SgUctSearch

\ 4

MergeChildren()
SgUctTree

Figure 5: Generate Move (In-Tree Phase) Diagram

5. Play-out phase

Outside of the UCT tree, the play-out phase (Figure 6) tries to generate play-out moves
based on the play-out policy. The play-out move is generated until a NULL move is
generated (i.e., after a pass move was played). The play-out policy generates a move in the
following order (from highest to lowest priority):
1. Nakade heuristic move
Atari capture move
Atari defense move
Low liberty move
Pattern move
Capture move
Random move
Pass move
NULL move

L XONUT AW

3. PlayoutGame()
SgUctSearch

Loc;p until NULL move

Playout Policy:
Generates a move in the following order:
Nakade Heuristic Move
Atari Capture
Atari Defense
Low Liberty Move
Pattern Move
Capture Move
Random Move
Pass Move
NULL Move

GenerateMove()
GoUctPlayoutPolicy
Generate a move based on playout
policy

Figure 6: Generate Move (Play-Out Phase) Diagram

Update RAVE Values for Both Players
Reference: SgUctSearch::UpdateRaveValues()

RAVE store weighted game result to moves (tree nodes). It gives more weight to moves
that are closer to the position that is currently being updated with RAVE statistics. Skip
RAVE update is not currently supported in the in-tree phase.

According to the Fuego documentation, the weight function linearly decreases from 2 to 0
as the move gets further away from the position where RAVE statistics are stored. Here is
the pseudocode:

Let len=length of sequence of current play (include both in-tree and playout sequences)
For position i in end position to first position of in-tree sequence
Iterate through all children nodes (subsequent moves)
Let myv=move of child node
Let first=first time mv played in sequence (of the current player color)
Calculate weight=2-(first-i)/(len-i)
Update child node’s RAVE value = weight * game result of playout(s)

After analyzing the equation, it is unclear how weight could be less than 1. In order for
weight <1, the ratio -(first-i)/(len-i) will have to be >1, which means first>len. This does not

seem to make sense since len is the length of the sequence, and first has to be within the
sequence. After playing with the code for a while, the weight never seems to go below 1.
The documentation might have a typo, or maybe more analysis/playing with code is
needed. Perhaps it is meant for future expansion?

Another interesting observation was that the position i seems to stay constant at 1 for
some reason. This did not seem to make sense to me since in the code, position i
decrements from the 2nd to last position in the playout sequence (which includes the in-
tree sequence) until position 0. More experiments will be needed to convince myself that 1
makes sense.

Selecting the Best Move

As described earlier, Fuego allows for different options in picking the best move:

Reference: SgUctSearch::FindBestChild)

1. Move with highest mean value (average game result)

2. Highest move count (number of times the move leading to this position was chosen)

3. UCT bound (UCT bound formula) - see UCT Bound Formula section below

4. Weighted sum of UCT and RAVE value - see Estimator Weights in UCT Search section
below

Item 3 and 4 are both described in the following sections.

Estimator Weights in UCT Search

The two estimators are the regular move value and the RAVE value. They are assumed to be
uncorrelated. The weight of estimator i is described as follow:

w[=l;, Z= L, MSE,.=£+C§M
Z MSE, ~ MSE, N, ‘

l l

where i = {Move,RAVE} Estimator

Reformulate to get the un-normalized weight. The variance and bias become constants (at
least in Fuego) that describe the initial steepness and the final asymptotic value of the un-
normalized weight

% = 1 = 1 = Cvar — Cinitia[
2
' MSEl var. C; 1 + Cbias i Cinitial
uas
Ni Ni Cvar Ni Cﬁnal
with
1 1
Cinilial = > final = CT
var bias

* N =sample count of the estimator (number of times the move leading to this
position was chosen.)

* Ciitia = initial weight parameter when N=1 and Cfinai>Cinitias; initial steepness
* Cpina = final weight parameter when N 2 o; final asymptotic value

The RAVE and regular move weight, as well as their relationship, are described in the
following sub-sections.

1. RAVE Weight:

. C. ..
RAVE weight = ————nitial ___
L 4 —initial
N RAVE C final
with
1 1
Cin itial = o~ cC, =——
! ’ final P
Cvar Cbias

In Fuego, the formula is further re-formulated as follow. By default, Ciitialize is 0.9
and Cgna is 20,000.

k
RAVE weight - Cinitial = NRAVE Cinirial = NRAVE
*k
1 Cinitial 1+ N RAVE Cinitial 1 + N RAVE
N RAVE C final C final Cinitial C final
_ N RAVE

raveparaml + raveparam2* N,

where

1
raveparaml = , raveparam?2 =

initial final
2. Move Weight

Bias is zero, and the variance become part of the normalization constant. This
means the weight is just the sample count of the estimator.

MOVE weight = N

move

where
Cbias =0= Cfinal
MSE, . = Car
Nmove
Lt U N
Z MSE, 6 Z*C,
Z * Cvar * w = Nmove

3. Relationship between RAVE and move weight:

Based in the weights equation, RAVE weight will dominate initially, but eventually
the regular move weight will dominate (Figure 7)

A Weight

Time

RAVE Move

| ¢ >
< ', dominates

dominates

Figure 7: RAVE and Move Weights

UCT Bound Formula

The UCT bound value combines the estimated move value and the UCT bias. The estimated
move value is reward for the move, and it is calculated as the weighted mean of regular
move and RAVE values, using Move Weight and RAVE Weight equations described earlier.
The move with the highest UCB bound is chosen as the best move.

UCT Bound = x_, +c logn = Estimated Move Value + UCT Bias

T,(n)

10

Xj = reward for move j = weighted mean of move value and RAVE value

Ji = move index

n = # times father node visited

Tj(n) = # times move j has been played

C = appropriate constant (defaultis 0.7 in Fuego)

The Estimated Move Value and UCT Bias terms are described in the following sub-sections.
1. Estimated Move Value
Reference: SgUctSearch::GetValueEstimate()

Estimated move value is the weighted mean of regular move value and rave value,

without RAVE bias
/ k) | k)
EstimatedMoveValue = Move Weight * Move Value + RAVE Weight * RAVE Value
Move Weight + RAVE Weight
where

Move Weight = N

Move Value = (1 - average game result)

RAVE Weight = N
raveparaml + raveparam2* N,

RAVE Value = weighted average game result

Move Weight, RAVE Weight, and RAVE Value were described in earlier sections.

The average game result is the win-loss ratio of the node. The node represents the
next move to be made by the opponent, and therefore we use (1-average game
result) to minimize the win.

In case of unexplored moves (i.e., neither estimator has a sample count yet), use a
pre-defined parameter value (m_firstPlayUrgency; default=10000). It may be set to
a small value to encourage early exploitation.

2. UCT bias
Reference: SgUctSearch::GetBound(Node, ChildNode)

Node = represents position
Child Node = represents subsequent move

log(positionvisited)

UCTbias =c*
1+ moveplayed

11

positionvisited = # of times node was visited
moveplayed = # of times the move was played, given position visited
c = 0.7 by default (as described in the original UCT paper)

The denominator is added with 1 to avoid dividing by zero.

Other Useful Information
This section presents some helpful information in navigating through Fuego.
1. Inheritance Diagrams
* UCT player inherits from a regular player, along with search and timer control.
* (Game inherits from game record.

* UCT root filter (in detecting ladder) inherits from the default root filter.
* Fuego main engine inherits from Go GTP engine and the default GTP engine.

. .
. .
. .

v v
| GoPlayer | | GoUctObjectWithSearch | | SgObjectWithDefaultTimeControl | |GoGameRecord | | GoUctDefaultRootFilter | | GoGtpEngine |
\ 1 4 1 1 1

\ ! il ! ' i
K ‘ v
[GoGame | [GoUctRootFilter | [FuegoMainEngine |

The following two class inheritances are by far the most useful in studying Fuego:
* UCT search inherits from UCT global search and Go UCT search.
* UCT thread state inherits from global and Go UCT state.

| GoUctGlobalSearch<POLICY, FACTORY> | | GoUctGlobalSearchState<POLICY> |

{ {

GoUctSearch GoUctState
| |
| |
| |
| |
v \

| SgUctSearch | | SgUctThreadState |

12

2. Class Diagrams

complete version).

This is an attempt to capture relationships between some important classes (not a

SgUctThreadState
Thread information

'm_threadld : size_t
m_isSearchlnitialized : bool
m_isTreeOutOfMem : bool
m_gamelnfo : SgUctGamelnfo
m_firstPlay : size_t

m_firstPlayOpp : size_t

m_moves : vector<SgMovelnfo>
m_excludeMoves : vector<SgMove>
m_randomizeCounter : int

/ ' N

SgUctTree
Tree used in UCT Search

m_maxNodes : size_t

m_root : SgUctNode

m_allocators : SgUctAllocator
S

7 N
’

N ’ AN
/ \ calls / X
/ ' N K SgUctAllocator
! calls . Allocator for nodes in SgUctTree
o : Curr:r?tuig:rirr'\z?r?anon / -m_start - SgUctNode
/ ' o oval 'vectordlgab calis -m_finish : SgUctNode
/ ' - N / -m_endOfStorage : SgUctNode
v ! m_inTreeSequence : vector<SgMove> /
\ m_sequence : vector<vector<SgMove>> / d
Mglgewilnof‘é?:af:on | m_aborted : vector<bool> / 7
M move - SgMove | | m_nodes : vector<SgUctNode> / e
- N g \ m_skipRaveUpdate : vector<vector<bool>> / e
m_value : float l I L
m_count : size_t H i N / e
m_raveValue : float | / N / 7
m_raveCount : float ' / calls / Ve
i calls \ J o
\ /
\] ! .
\ i ' SgUctNode .
\ \ / One node in SgUctTree L
calls | / m_statistics : SgStatisticsBase S
N ! ! m_firstChild : SgUctNode L,
N i / m_nuChildren : int Ve
N \ ! m_move : SgMove 4
\ \ ' m_raveValue : SgStatisticsBase GoGame
\ 1 ! m_posCount : size_t Game information
\ | / m_knowledgeCount : size_t [-m_player : SgBWArray<GoPlayer> |
N 1 '
AN Il . Gam ' - 7 e
\ ' / L i .- J N
\ \I‘ // 7 i '/__— / N
\ , - \
Vo / e S / N
Ny . T / N
NV ya ' K “
SgMove le -~ ! / \
Special move definition
typedef int

SgStatisticsBase

SG_NULLMOVE = -1
SG_COUPONMOVE = -2

SG_RESIGN = -4

SG_COUPONMOVE_VIRTUAL =

<VALUE, COUNT>
Statistics for node
-3 m_count : COUNT
m_mean : VALUE

3. Board representation

1D array
Neighbors of a point:

GoGtpEngine
Engine includes player, board, game, book,
and commands

-m_player : GoPlayer
-m_board : GoBoard
-m_game : GoGame

-m_book : GoBook

-m_sgCommands : SgGtpCommands
-m_bookC:

2
GoBoard

-m_state : State

‘GoMovelnfoFlag

Special move definition
GO_MOVEFLAG_REPETITION The move was a repetition move.

GO_MOVEFLAG_SUICIDE The move caused self-removal of stones.
GO_MOVEFLAG_CAPTURING The move captured one or more enemy stones.
GO_MOVEFLAG_ILLEGAL The move was illegal according to the current rules and allow ko settings.

offset SG WE and SG_NS

P+SG_NS

P-SG_WE P

P+S5G_WE

P-SG_NS

Points & coordinates:

SgPointUtil::Pt, SgPointUtil::Row, SgPointUtil::Col
o Pt(1,1) = 21 = Location ‘A1’, lower left corner of board
o SgPoint.h (default) point numbers

13

[
o

381 3B2 3B3 384 385 386 387 3BB 389 390 391 392 393 394 395 396 397 398 399
361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379
341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359
321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339
301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319
281 282 283 284 285 286 2B7 288 289 290 291 292 293 294 295 296 297 298 299
261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279
241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 25B 259
221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238B 239
201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219
181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199
161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179
141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159
121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139
101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119
81 B2 B3 84 85 86 B7 BB 89 90 91 92 93 94 95 96 97 9B 99

[I S S S S S
R W U oy~

41 42 43 44 45 46 47 4B 49 50 51 52 53 54 55 56 57 58 59
21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39
[A] [B] [C] [D] [E] [F] [G] [H] [J) [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T)

[
HN WU e o

4. UCT Patterns

Reference: GoUctPatterns<BOARD> class template
o Hard-coded pattern matching routines to match patterns used by MoGo
o See http://hal.inria.fr/docs/00/11/72 /66 /PDF/MoGoReport.pdf
o Move is always in center of pattern or at middle edge point (lower line) for edge
patterns
o Patterns matched for both colors, unless specified otherwise

Notation:
O = White X Black or Empty
X = Black o = White or Empty
. = Empty B = Black to Play
? = Don't care W = White to Play

* Patterns for Hane: return true if any patern is matched
X 0X X0 . X O07? X0O0

.« .o . .« .o . X . . .« .o .

?2 2 ? ?2 .2 ?2 .2 ? . ?2 B

* Patterns for Cutl: return true if 1st pattern is matched, but not next two
X 0 ? X 0 ? X 0 ?
o . ? O. O o . .
?2 2?2 ? ? ? ?2 07

e Pattern for Cut2

? X ?
O .0
X X X

14

e Pattern for Edge: return true if any pattern is matched
X .72 ?2 X ? 2 X0 2 X0 2 X0
o .72 o.O ? .2 B ?2 .0W O . X W

5. Playing games between two Go programs

GoGUI reference: http://gogul.sourceforge.net/doc/reference-twogtp.html

Command: gogui-twogtp

Example: A simple shell script that plays 5 games between GNU Go (black) and Fuego
(white).

Note: GNU Go uses Japanese rules (territory counting) by default, while Fuego uses
Chinese rules (area counting) by default. GNU Go can play at different levels up to level 10
(highest and most accurate level). By default it plays at level 10.

set NUMGAMES=6

set BSIZE=9

set KOMI=7.5

set FILENAME="fuego gnugo"

gogui-twogtp -black "gnugo --mode gtp --chinese-rules" \
-white "fuego" \
-games S$NUMGAMES \
—komi SKOMI \
-size $BSIZE \
-alternate \
-sgffile SFILENAME \
—auto
gogui-twogtp -analyze SFILENAME.dat

Options used (see website reference for full list of options available):

-black Command for the black program
-white Command for white program
-games Number of games to play

-komi Set komi

-size Board size

-alternate Alternate colors; Black and White are exchanged every odd game;
scores saved in SGF file keeps the name for Black and White given at

command

-sgffile Prefix of the SGF file(s); each game is saved with filename prefix-n.sgf,
where n is the game number

-auto Automatically play games

-analyze Create a HTML formatted result page of the games played

15

The resulting files:

fuego_gnugo-0.sgf
fuego_gnugo-1.sgf
fuego_gnugo-2.sgf
fuego_gnugo-3.sgf
fuego_gnugo-4.sgf
fuego_gnugo-5.sgf
fuego_gnugo.dat

fuego_gnugo.html : summary, results, and links to all games played
fuego_gnugo.summary.dat

Area counting versus territory counting: TODO

6. Useful websites for Go information:

* Sensei’s Library: http://senseis.xmp.net/ (pretty much anything we need to know
about Go)

* Computer Go Resources: http://computer-go.info/

* List of computer Go tournaments: http://computer-go.info/events/index.html

Top MCTS computer Go programs:

Go Program Recent Achievement

1. SilverStar 2009 UEC Cup winner

(Japanese

edition of KCC

Igo)
2. Zen 2009 Computer Olympiad winner
3. CrazyStone 2007 & 2008 UEC Cup winner
4. Many Faces of Go | 2008 Computer Olympiad winner
5. Fuego November 2009 KGS winner; 15t computer program to win

an official game of 9x9 Go against a 9-Dan professional player

6. MoGo 2007 Computer Olympiad winner

GNU Go is not a top-ranked program, but it is a free program with well-documented
manual.

Some Terminologies

SGF file format:

Smart Go Format for computer-recorded go games

Liberty

16

A vacant point immediately adjacent to a stone either directly up, down, left, or right from
it, or connected through a continuous string of same-colored stones to such a point.

Atari
A situation where a stone or chain or stones has only one liberty, and may be captured on
the next move if not given one or ore additional liberties.

Self-atari / auto-atari
Placing a single stone in a position where it only has one liberty.

Komi
Black has the advantage of first move. To compensate, white can be given an agreed, set
number of points (called komi) before starting the game.

Joseki

Established sequences of play considered optimal result to both players. Thousands of
lines researched and documented.

Seki
Term describe an impasse that cannot be resolved into simple life and death. For example,
capturing race end in a position in which neither player can capture the other.

Life and death
A fundamental concept in Go where the status of a distinct group of stones are determined
as “alive” or “captured”.

Factory design pattern:
o http://en.wikipedia.org/wiki/Factory method pattern

Hashing of positions:
o GNU GO 14.2 Hashing of positions
o http://www.delorie.com/gnu/docs/gnugo/gnugo 169.html#IDX352
o High occurrence: previously checked position is rechecked, of ten from different
branch in recursion tree - waste computing resources
o Hash (or transposition) table: Store current position, function we are in, result of
search; which move made attack/defense succeed
o Key: Go position
o Data: results of reading for certain functions and groups

Nakade:
o “Inside move” or “move inside”
o Crucial to life and death
o Refers to a situation where a group has a single large internal, enclosed space that
can be made into two eyes by the right move, or prevented from doing so by an
enemy move
o Can be designated the actual move that prevents the two-eye formation

17

Source: http://senseis.xmp.net/?Nakade

References

M. Enzenberger and M. Miiller. “Fuego - an open-source framework for board games and Go
engine based on Monte-Carlo tree search”. Technical Report TR 09-08, Dept. of Computing
Science. University of Alberta, Edmonton, Alberta, Canada, 2009.

M. Enzenberger and M. Miiller. “A lock-free multithreaded Monte-Carlo tree search
algorithm”. Advances in Computer Games 12, Pamplona, Spain, 2009.

Fuego Developer’s Documentation: http: //www.cs.ualberta.ca/~games/go/fuego/fuego-

doc/

18

